Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38339228

RESUMO

Despite recent advances in cancer therapy, ovarian cancer remains the most lethal gynecological cancer worldwide, making it crucial and of the utmost importance to establish novel therapeutic strategies. Adjuvant radiotherapy has been assessed historically, but its use was limited by intestinal toxicity. We recently established the role of Limosilactobacillus reuteri in releasing IL-22 (LR-IL-22) as an effective radiation mitigator, and we have now assessed its effect in an ovarian cancer mouse model. We hypothesized that an LR-IL-22 gavage would enable intestinal radioprotection by modifying the tumor microenvironment and, subsequently, improving overall survival in female C57BL/6MUC-1 mice with widespread abdominal syngeneic 2F8cis ovarian cancer. Herein, we report that the LR-IL-22 gavage not only improved overall survival in mice when combined with a PD-L1 inhibitor by inducing differential gene expression in irradiated stem cells but also induced PD-L1 protein expression in ovarian cancer cells and mobilized CD8+ T cells in whole abdomen irradiated mice. The addition of LR-IL-22 to a combined treatment modality with fractionated whole abdomen radiation (WAI) and systemic chemotherapy and immunotherapy regimens can facilitate a safe and effective protocol to reduce tumor burden, increase survival, and improve the quality of life of a locally advanced ovarian cancer patient.

2.
J Food Sci ; 89(1): 523-539, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010727

RESUMO

Gluco-oligosaccharides (GlcOS) are potential prebiotics that positively modulate beneficial gut commensals like lactobacilli. For the rational design of GlcOS as prebiotics or combined with lactobacilli as synbiotics, it is important to establish the structure requirements of GlcOS and specificity toward lactobacilli. Herein, the utilization of 10 GlcOS with varied degrees of polymerization (DP) and glycosidic linkages by 7 lactobacilli strains (Levilactobacillus brevis ATCC 8287, Limosilactobacillus reuteri ATCC PTA 6475, Lacticaseibacillus rhamnosus ATCC 53103, Lentilactobacillus buchneri ATCC 4005, Limosilactobacillus fermentum FUA 3589, Lactiplantibacillus plantarum WCFS1, and Lactobacillus gasseri ATCC 33323) was studied. L. brevis ATCC 8287 was the only strain that grew on α/ß-(1→4/6) linked disaccharides, whereas other strains showed diverse patterns, dependent on the availability of genes encoding sugar transporters and catabolic enzymes. The effect of DP on GlcOS utilization was strain dependent. ß-(1→4) Linked cello-oligosaccharides (COS) supported the growth of L. brevis ATCC 8287 and L. plantarum WCFS1, and shorter COS (DP 2-3) were preferentially utilized over longer COS (DP 4-7) (consumption ≥90% vs. 40%-60%). α-(1→4) Linked maltotriose and maltodextrin (DP 2-11) were effectively utilized by L. brevis ATCC 8287, L. reuteri ATCC 6475, and L. plantarum WCFS1, but not L. fermentum FUA 3589. Growth of L. brevis ATCC 8287 on branched isomalto-oligosaccharides (DP 2-6) suggested preferential consumption of DP 2-3, but no preference between α-(1→6) and α-(1→4) linkages. The knowledge of the structure-specific GlcOS utilization by different lactobacilli from this study helps the structural rationale of GlcOS for prebiotic development.


Assuntos
Limosilactobacillus reuteri , Probióticos , Simbióticos , Glicosídeos , Polimerização , Oligossacarídeos/química , Prebióticos , Probióticos/metabolismo
3.
mBio ; 14(5): e0119723, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37668408

RESUMO

IMPORTANCE: Lactic acid bacteria constitute a genetically diverse group of microorganisms with significant roles in the food industry, biotechnology, agriculture, and medicine. A core understanding of bacterial physiology in diverse environments is crucial to select and develop bacteria for industrial and medical applications. However, there is a lack of versatile tools to track (recombinant) protein production in lactic acid bacteria. In this study, we adapted a peptide-based bioluminescent tagging system that is functional across multiple genera and species. This system enables tracking of tagged proteins both in vitro and in situ, while it also can be used to enumerate recombinant bacteria from the mouse gastrointestinal tract with accuracy comparable to that of conventional plate counts. Our work expands the lactic acid bacteria genetic toolbox and will facilitate researchers in industry and academia with opportunities to monitor microbes and proteins under different physiologically relevant conditions.


Assuntos
Lactobacillales , Probióticos , Animais , Camundongos , Lactobacillales/genética , Lactobacillales/metabolismo , Bactérias/genética , Biotecnologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Probiotics Antimicrob Proteins ; 15(4): 1001-1013, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37178405

RESUMO

Probiotic Limosilactobacillus reuteri DSM 17938 (DSM 17938) prolongs the survival of Treg-deficient scurfy (SF) mice and reduces multiorgan inflammation by a process requiring adenosine receptor 2A (A2A) on T cells. We hypothesized that L. reuteri-derived ecto-5'-nucleotidase (ecto-5'NT) activity acts to generate adenosine, which may be a central mediator for L. reuteri protection in SF mice. We evaluated DSM 17938-5'NT activity and the associated adenosine and inosine levels in plasma, gut, and liver of SF mice. We examined orally fed DSM 17938, DSM 17938Δ5NT (with a deleted 5'NT gene), and DSM 32846 (BG-R46) (a naturally selected strain derived from DSM 17938). Results showed that DSM 17938 and BG-R46 produced adenosine while "exhausting" AMP, whereas DSM 17938∆5NT did not generate adenosine in culture. Plasma 5'NT activity was increased by DSM 17938 or BG-R46, but not by DSM 17938Δ5NT in SF mice. BG-R46 increased both adenosine and inosine levels in the cecum of SF mice. DSM 17938 increased adenosine levels, whereas BG-R46 increased inosine levels in the liver. DSM 17938Δ5NT did not significantly change the levels of adenosine or inosine in the GI tract or the liver of SF mice. Although regulatory CD73+CD8+ T cells were decreased in spleen and blood of SF mice, these regulatory T cells could be increased by orally feeding DSM 17938 or BG-R46, but not DSM 17938Δ5NT. In conclusion, probiotic-5'NT may be a central mediator of DSM 17938 protection against autoimmunity. Optimal 5'NT activity from various probiotic strains could be beneficial in treating Treg-associated immune disorders in humans.


Assuntos
5'-Nucleotidase , Adenosina , Humanos , Animais , Camundongos , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Linfócitos T Reguladores/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Anti-Inflamatórios , Inosina
5.
Compr Rev Food Sci Food Saf ; 22(4): 2611-2651, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37073416

RESUMO

Prebiotics have long been used to modulate the gut microbiota and improve host health. Most established prebiotics are nondigestible carbohydrates, especially short-chain oligosaccharides. Recently, gluco-oligosaccharides (GlcOS) with 2-10 glucose residues and one or more O-glycosidic linkage(s) have been found to exert prebiotic potentials (not fully established prebiotics) because of their selective fermentation by beneficial gut bacteria. However, the prebiotic effects (non-digestibility, selective fermentability, and potential health effects) of GlcOS are highly variable due to their complex structure originating from different synthesis processes. The relationship between GlcOS structure and their potential prebiotic effects has not been fully understood. To date, a comprehensive summary of the knowledge of GlcOS is still missing. Therefore, this review provides an overview of GlcOS as potential prebiotics, covering their synthesis, purification, structural characterization, and prebiotic effect evaluation. First, GlcOS with different structures are introduced. Then, the enzymatic and chemical processes for GlcOS synthesis are critically reviewed, including reaction mechanisms, substrates, catalysts, the structures of resultant GlcOS, and the synthetic performance (yield and selectivity). Industrial separation techniques for GlcOS purification and structural characterization methods are discussed in detail. Finally, in vitro and in vivo studies to evaluate the non-digestibility, selective fermentability, and associated health effects of different GlcOS are extensively reviewed with a special focus on the GlcOS structure-function relationship.


Assuntos
Microbioma Gastrointestinal , Prebióticos , Oligossacarídeos , Fermentação
6.
Cancers (Basel) ; 15(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36980556

RESUMO

Irradiation can be an effective treatment for ovarian cancer, but its use is limited by intestinal toxicity. Thus, strategies to mitigate toxicity are important and can revitalize the current standard of care. We previously established that LR-IL-22 protects the intestine from WAI. We now hypothesize that LR-IFN-ß is an effective radiation protector and mitigator and is rapidly cleared from the digestive tract, making it an option for intestinal radioprotection. We report that the gavage of LR-IFN-ß during WAI provides improved intestinal barrier integrity and significantly preserves the numbers of Lgr5+GFP+ intestinal stem cells, improving survival. The rapid clearance of the genetically engineered probiotic from the digestive tract renders it a safe and feasible radiation mitigator. Therefore, the above genetically engineered probiotic is both a feasible and effective radiation mitigator that could potentially revolutionize the management of OC patients. Furthermore, the subsequent addition of platinum/taxane-based chemotherapy to the combination of WAI and LR-IFN-ß should reduce tumor volume while protecting the intestine and should improve the overall survival in OC patients.

7.
Food Res Int ; 165: 112436, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869469

RESUMO

Glucose-based short-chain oligosaccharides (gluco-oligosaccharides, GlcOS) have been established as functional food ingredients with health-promoting properties. Currently, GlcOS (e.g., isomalto-oligosaccharides, IMOs) are commercially produced via enzymatic processes, which face the challenges of low yield and high cost. Therefore, developing efficient technologies for large-scale production of prebiotic GlcOS is highly desirable. Herein, a facile chemical process was developed to synthesize GlcOS as potential prebiotics via enhanced dehydration condensation of glucose in concentrated sulfuric acid (60-92 %). The maximum GlcOS yield of 83 % was achieved under the optimal condition of 50 % initial glucose loading, 76 % H2SO4, 70 °C, and 20 min. Structural analysis revealed that the synthesized GlcOS are mainly short-chain oligomers with a degree of polymerization (DP) between 2 and 4 (46 % DP 2, 22 % DP 3, 12 % DP 4) and a small percentage of larger oligosaccharides (DP 5-9), which are linked by predominantly α- and ß-(1→6) linkages along with (1→4), (1→ 3), (1→2), and (1↔1) linkages. In vitro fermentation experiments by probiotic Bifidobacterium bifidum ATCC 29521, Bifidobacterium animalis subsp. lactis DSM 10140, and Limosilactobacillus reuteri ATCC 6475 indicated that the GlcOS can be utilized as a carbon source for bacterial growth, and their promotion effect was overall comparable to three commercial prebiotic IMOs. GlcOS were also successfully synthesized from maltose and cellobiose with similar yield and structures to those from glucose, implying the possibility of synthesizing the prebiotic GlcOS directly from inexpensive starch and cellulose.


Assuntos
Bifidobacterium animalis , Probióticos , Glicosídeos , Prebióticos , Bactérias , Glucose , Oligossacarídeos
8.
Trends Microbiol ; 31(2): 197-211, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36220750

RESUMO

For decades, bacteria have been exploited as vectors for vaccines and therapeutics. However, the bacterial arsenal used has historically been limited to a few strains. Advancements in immunology, combined with the development of genetic tools, have expanded our strategies and capabilities to engineer bacteria using various delivery strategies. Depending on the application, each delivery strategy requires specific considerations, optimization, and safety concerns. Here, we review various modes of therapeutic delivery used to target or vaccinate against a variety of ailments in preclinical models and in clinical trials. We highlight modes of bacteria-derived delivery best suited for different applications. Finally, we discuss current obstacles in bacteria-derived therapies and explore potential improvements of the various modes of therapeutic delivery.


Assuntos
Bactérias , Bactérias/genética
9.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628427

RESUMO

(1) Background: The systemic administration of therapeutic agents to the intestine including cytokines, such as Interleukin-22 (IL-22), is compromised by damage to the microvasculature 24 hrs after total body irradiation (TBI). At that time, there is significant death of intestinal microvascular endothelial cells and destruction of the lamina propria, which limits drug delivery through the circulation, thus reducing the capacity of therapeutics to stabilize the numbers of Lgr5+ intestinal crypt stem cells and their progeny, and improve survival. By its direct action on intestinal stem cells and their villus regeneration capacity, IL-22 is both an ionizing irradiation protector and mitigator. (2) Methods: To improve delivery of IL-22 to the irradiated intestine, we gavaged Lactobacillus-reuteri as a platform for the second-generation probiotic Lactobacillus-reuteri-Interleukin-22 (LR-IL-22). (3) Results: There was effective radiation mitigation by gavage of LR-IL-22 at 24 h after intestinal irradiation. Multiple biomarkers of radiation damage to the intestine, immune system and bone marrow were improved by LR-IL-22 compared to the gavage of control LR or intraperitoneal injection of IL-22 protein. (4) Conclusions: Oral administration of LR-IL-22 is an effective protector and mitigator of intestinal irradiation damage.


Assuntos
Limosilactobacillus reuteri , Probióticos , Proteção Radiológica , Células Endoteliais , Interleucinas , Mucosa Intestinal/metabolismo , Intestinos
10.
Radiat Res ; 198(1): 89-105, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35446961

RESUMO

Oral administration (gavage) of a second-generation probiotic, Lactobacillus reuteri (L. reuteri), that releases interleukin-22 (LR-IL-22) at 24 h after total-body irradiation (TBI) mitigates damage to the intestine. We determined that LR-IL-22 also mitigates partial-body irradiation (PBI) and whole-abdomen irradiation (WAI). Irradiation can be an effective treatment for ovarian cancer, but its use is limited by intestinal toxicity. Strategies to mitigate toxicity are important and can revitalize this modality to treat ovarian cancer. In the present studies, we evaluated whether LR-IL-22 facilitates fractionated WAI in female C57BL/6 mice with disseminated ovarian cancer given a single fraction of either 15.75 Gy or 19.75 Gy or 4 daily fractions of 6 Gy or 6.5 Gy. Mice receiving single or multiple administrations of LR-IL-22 during WAI showed improved intestinal barrier integrity (P = 0.0167), reduced levels of radiation-induced intestinal cytokines including KC/CXCL1 (P = 0.002) and IFN-γ (P = 0.0024), and reduced levels of plasma, Eotaxin/CCL11 (P = 0.0088). LR-IL-22 significantly preserved the numbers of Lgr5+GFP+ intestinal stem cells (P = 0.0010) and improved survival (P < 0.0343). Female C57BL/6MUC-1 mice with widespread abdominal syngeneic 2F8cis ovarian cancer that received LR-IL-22 during 6.5 Gy WAI in 4 fractions had reduced tumor burden, less intestinal toxicity, and improved 30-day survival. Furthermore, LR-IL-22 facilitated WAI when added to Paclitaxel and Carboplatin chemotherapy and further increased survival. Oral administration (gavage) of LR-IL-22 is a potentially valuable intestinal radioprotector, which can facilitate therapeutic WAI for widespread intra-abdominal ovarian cancer.


Assuntos
Limosilactobacillus reuteri , Neoplasias Ovarianas , Abdome , Animais , Carcinoma Epitelial do Ovário , Feminino , Humanos , Interleucinas , Intestinos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/radioterapia
11.
Cell Host Microbe ; 30(6): 824-835.e6, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35443156

RESUMO

The mammalian microbiome encodes numerous secondary metabolite biosynthetic gene clusters; yet, their role in microbe-microbe interactions is unclear. Here, we characterized two polyketide synthase gene clusters (fun and pks) in the gut symbiont Limosilactobacillus reuteri. The pks, but not the fun, cluster encodes antimicrobial activity. Forty-one of 51 L. reuteri strains tested are sensitive to Pks products; this finding was independent of strains' host origin. Sensitivity to Pks was also established in intraspecies competition experiments in gnotobiotic mice. Comparative genome analyses between Pks-resistant and -sensitive strains identified an acyltransferase gene (act) unique to Pks-resistant strains. Subsequent cell-wall analysis of wild-type and act mutant strains showed that Act acetylates cell-wall components, providing resistance to Pks-mediated killing. Additionally, pks mutants lost their competitive advantage, while act mutants lost their Pks resistance in in vivo competition assays. These findings provide insight into how closely related gut symbionts can compete and co-exist in the gastrointestinal tract.


Assuntos
Família Multigênica , Policetídeo Sintases , Acetilação , Animais , Trato Gastrointestinal/metabolismo , Vida Livre de Germes , Mamíferos/genética , Camundongos , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo
12.
Microbiome ; 9(1): 198, 2021 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-34602091

RESUMO

BACKGROUND: Intestinal Peyer's patches (PPs) form unique niches for bacteria-immune cell interactions that direct host immunity and shape the microbiome. Here we investigate how peroral administration of probiotic bacterium Limosilactobacillus reuteri R2LC affects B lymphocytes and IgA induction in the PPs, as well as the downstream consequences on intestinal microbiota and susceptibility to inflammation. RESULTS: The B cells of PPs were separated by size to circumvent activation-dependent cell identification biases due to dynamic expression of markers, which resulted in two phenotypically, transcriptionally, and spatially distinct subsets: small IgD+/GL7-/S1PR1+/Bcl6, CCR6-expressing pre-germinal center (GC)-like B cells with innate-like functions located subepithelially, and large GL7+/S1PR1-/Ki67+/Bcl6, CD69-expressing B cells with strong metabolic activity found in the GC. Peroral L. reuteri administration expanded both B cell subsets and enhanced the innate-like properties of pre-GC-like B cells while retaining them in the sub-epithelial compartment by increased sphingosine-1-phosphate/S1PR1 signaling. Furthermore, L. reuteri promoted GC-like B cell differentiation, which involved expansion of the GC area and autocrine TGFß-1 activation. Consequently, PD-1-T follicular helper cell-dependent IgA induction and production was increased by L. reuteri, which shifted the intestinal microbiome and protected against dextran-sulfate-sodium induced colitis and dysbiosis. CONCLUSIONS: The Peyer's patches sense, enhance and transmit probiotic signals by increasing the numbers and effector functions of distinct B cell subsets, resulting in increased IgA production, altered intestinal microbiota, and protection against inflammation. Video abstract.


Assuntos
Subpopulações de Linfócitos B , Probióticos , Centro Germinativo , Nódulos Linfáticos Agregados , Linfócitos T Auxiliares-Indutores
13.
PLoS Pathog ; 17(3): e1009116, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33684178

RESUMO

Streptococcus agalactiae (group B Streptococcus; GBS) remains a dominant cause of serious neonatal infections. One aspect of GBS that renders it particularly virulent during the perinatal period is its ability to invade the chorioamniotic membranes and persist in amniotic fluid, which is nutritionally deplete and rich in fetal immunologic factors such as antimicrobial peptides. We used next-generation sequencing of transposon-genome junctions (Tn-seq) to identify five GBS genes that promote survival in the presence of human amniotic fluid. We confirmed our Tn-seq findings using a novel CRISPR inhibition (CRISPRi) gene expression knockdown system. This analysis showed that one gene, which encodes a GntR-class transcription factor that we named MrvR, conferred a significant fitness benefit to GBS in amniotic fluid. We generated an isogenic targeted deletion of the mrvR gene, which had a growth defect in amniotic fluid relative to the wild type parent strain. The mrvR deletion strain also showed a significant biofilm defect in vitro. Subsequent in vivo studies showed that while the mutant was able to cause persistent murine vaginal colonization, pregnant mice colonized with the mrvR deletion strain did not develop preterm labor despite consistent GBS invasion of the uterus and the fetoplacental units. In contrast, pregnant mice colonized with wild type GBS consistently deliver prematurely. In a sepsis model the mrvR deletion strain showed significantly decreased lethality. In order to better understand the mechanism by which this newly identified transcription factor controls GBS virulence, we performed RNA-seq on wild type and mrvR deletion GBS strains, which revealed that the transcription factor affects expression of a wide range of genes across the GBS chromosome. Nucleotide biosynthesis and salvage pathways were highly represented among the set of differentially expressed genes, suggesting that MrvR may be involved in regulating nucleotide availability.


Assuntos
Líquido Amniótico/virologia , Infecções Estreptocócicas/virologia , Streptococcus agalactiae/genética , Fatores de Transcrição/metabolismo , Virulência/genética , Animais , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Camundongos , Fenótipo , Infecções Estreptocócicas/imunologia
14.
Free Radic Biol Med ; 163: 102-115, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310139

RESUMO

Xanthones from the tropical fruit mangosteen (Garcinia mangostana) display anti-inflammatory and anti-oxidative activities. Here, we isolate and identify potential inducers of the aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways from mangosteen using a bioassay-guided strategy. Mangosteen fruit pericarp extracts were subjected to sequential solvent extractions, followed by chromatography coupled with NMR spectroscopy and mass spectrometric analyses for identification and isolation of pure compounds. Isolation of active fractions led to seven prenylated xanthones that were identified and subsequently evaluated for bioactivity. In vitro luciferase reporter cellular assays using H1L6.1c3 (AhR induction) and HepG2-ARE (Nrf2 induction) were used to identify AhR and Nrf2 activators. All seven prenylated xanthones displayed AhR inducing activity, whereas only five xanthones activated Nrf2. Garcinone D (GarD) significantly upregulated AhR/Cyp1a1 and Nrf2/HO-1 protein expression and enhanced zonula occludens-1 and occludin protein levels in HT-29 cells. In addition, GarD inhibited oxidative stress-induced intestinal epithelial barrier dysfunction by enhancing tight junction (TJ) proteins and inhibition of reactive oxygen species production. Inhibition of AhR by pretreating cells with an AhR antagonist revealed that the AhR pathway is required for the improved epithelial barrier functions of GarD. These results highlight a dual mechanism by GarD that confers protection against intestinal epithelial barrier dysfunction.


Assuntos
Garcinia mangostana , Xantonas , Frutas , Células HT29 , Humanos , Fator 2 Relacionado a NF-E2/genética , Extratos Vegetais/farmacologia , Receptores de Hidrocarboneto Arílico/genética , Xantonas/farmacologia
15.
mSphere ; 5(3)2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32581074

RESUMO

The incidence of metabolic syndrome continues to rise globally. In mice, intravenous administration of interleukin-22 (IL-22) ameliorates various disease phenotypes associated with diet-induced metabolic syndrome. In patients, oral treatment is favored over intravenous treatment, but methodologies to deliver IL-22 via the oral route are nonexistent. The goal of this study was to assess to what extent engineered Lactobacillus reuteri secreting IL-22 could ameliorate nonalcoholic fatty liver disease. We used a mouse model of diet-induced obesity and assessed various markers of metabolic syndrome following treatment with L. reuteri and a recombinant derivative. Mice that received an 8-week treatment of wild-type probiotic gained less weight and had a smaller fat pad than the control group, but these phenotypes were not further enhanced by recombinant L. reuteri However, L. reuteri secreting IL-22 significantly reduced liver weight and triglycerides at levels that exceeded those of the probiotic wild-type treatment group. Our findings are interesting in light of the observed phenotypes associated with reduced nonalcoholic liver disease, in humans the most prevalent chronic liver disease, following treatment of a next-generation probiotic that is administered orally. Once biological and environmental containment strategies are in place, therapeutic applications of recombinant Lactobacillus reuteri are on the horizon.IMPORTANCE In humans, nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disease due to the increased prevalence of obesity. While treatment of NAFLD is often geared toward lifestyle changes, such as diet and exercise, the use of dietary supplements such as probiotics is underinvestigated. Here, we report that probiotic Lactobacillus reuteri reduces fatty liver in a mouse model of diet-induced obesity. This phenotype was further enhanced upon delivery of recombinant interleukin-22 by engineered Lactobacillus reuteri These observations pave the road to a better understanding of probiotic mechanisms driving the reduction of diet-induced steatosis and to development of next-generation probiotics for use in the clinic. Ultimately, these studies may lead to rational selection of (engineered) probiotics to ameliorate fatty liver disease.


Assuntos
Fígado Gorduroso/prevenção & controle , Interleucinas/administração & dosagem , Limosilactobacillus reuteri/genética , Obesidade/terapia , Probióticos/uso terapêutico , Animais , Biomarcadores , Dieta , Modelos Animais de Doenças , Interleucinas/genética , Masculino , Síndrome Metabólica/terapia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética
16.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32276972

RESUMO

Cross-feeding based on the metabolite 1,2-propanediol has been proposed to have an important role in the establishment of trophic interactions among gut symbionts, but its ecological importance has not been empirically established. Here, we show that in vitro growth of Lactobacillus reuteri (syn. Limosilactobacillus reuteri) ATCC PTA 6475 is enhanced through 1,2-propanediol produced by Bifidobacterium breve UCC2003 and Escherichia coli MG1655 from the metabolization of fucose and rhamnose, respectively. Work with isogenic mutants showed that the trophic interaction is dependent on the pduCDE operon in L. reuteri, which encodes the ability to use 1,2-propanediol, and the l-fucose permease (fucP) gene in B. breve, which is required for 1,2-propanediol formation from fucose. Experiments in gnotobiotic mice revealed that, although the pduCDE operon bestows a fitness burden on L. reuteri ATCC PTA 6475 in the mouse digestive tract, the ecological performance of the strain was enhanced in the presence of B. breve UCC2003 and the mucus-degrading species Bifidobacterium bifidum The use of the respective pduCDE and fucP mutants of L. reuteri and B. breve in the mouse experiments indicated that the trophic interaction was specifically based on 1,2-propanediol. Overall, our work established the ecological importance of cross-feeding relationships based on 1,2-propanediol for the fitness of a bacterial symbiont in the vertebrate gut.IMPORTANCE Through experiments in gnotobiotic mice that employed isogenic mutants of bacterial strains that produce (Bifidobacterium breve) and utilize (Lactobacillus reuteri) 1,2-propanediol, this study provides mechanistic insight into the ecological ramifications of a trophic interaction between gut symbionts. The findings improve our understanding on how cross-feeding influences the competitive fitness of L. reuteri in the vertebrate gut and revealed a putative selective force that shaped the evolution of the species. The findings are relevant since they provide a basis to design rational microbial-based strategies to modulate gut ecosystems, which could employ mixtures of bacterial strains that establish trophic interactions or a personalized approach based on the ability of a resident microbiota to provide resources for the incoming microbe.


Assuntos
Bifidobacterium breve/metabolismo , Escherichia coli/metabolismo , Microbioma Gastrointestinal , Vida Livre de Germes , Limosilactobacillus reuteri/metabolismo , Propilenoglicol/metabolismo , Animais , Feminino , Masculino , Camundongos
17.
Curr Opin Biotechnol ; 61: vi-viii, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32204852
18.
Microbiol Resour Announc ; 9(7)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054699

RESUMO

Lactobacillus reuteri is a bacterial gut symbiont found in many vertebrate animals. The genetic heterogeneity of L. reuteri is likely to contribute to differences in ecological performance within a host. Here, we report the draft genome sequences of 12 L. reuteri strains of rodent origin.

19.
Front Microbiol ; 11: 601422, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33408707

RESUMO

Lineages within the species Limosilactobacillus reuteri have specialized to various hosts and their genomes reflect these adaptations. The pdu-cbi-cob-hem gene cluster is conserved in most human and poultry isolates but is infrequent in rodent and porcine isolates. This gene cluster confers the transformation of glycerol into 3-hydroxy-propionaldehyde (reuterin), which can either be secreted and function as precursor of the antimicrobial compound acrolein or serve as an electron acceptor that enhances the organisms' growth rate. However, it remains unclear which of these two functions is more relevant for L. reuteri evolution and ecology. Here we characterized the effect of glycerol on growth rate and reuterin formation in L. reuteri strains across different phylogenetic lineages during growth on ecologically relevant carbohydrates. We further evaluated the innate reuterin resistance among these strains to infer a possible role of reuterin in the evolution of strains. Results revealed that the poultry/human lineage VI strain, L. reuteri DSM 17938 shows more growth enhancement through glycerol and greater capacity for reuterin production on glucose and maltose as compared to human lineage II strains. Interestingly, reuterin production in lineage II strains was significantly elevated on raffinose and lactose, reaching levels similar to DSM 17938. On all carbohydrates tested, reuterin production occurred during the exponential growth phase and became undetectable during the stationary growth phase. The amount of reuterin produced was sufficient to inhibit E. coli, suggesting that it could be ecologically relevant, but the resistance towards reuterin among L. reuteri strains was highly variable and, for the most part, unrelated to the strain's capacity for reuterin production. Overall, the findings suggest differences in the substrate-specific regulation of the pdu cluster in L. reuteri lineages that might be reflective of their ecological niches, e.g., chicken foregut versus human infant and adult large intestine. Such information can inform future studies on the ecology of L. reuteri and guide the development of synbiotic applications to improve the therapeutic use of this species.

20.
Appl Environ Microbiol ; 86(5)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31862715

RESUMO

Phenolic acids are among the most abundant phenolic compounds in edible parts of plants. Lactic acid bacteria (LAB) metabolize phenolic acids, but the enzyme responsible for reducing hydroxycinnamic acids to phenylpropionic acids (HcrB) was only recently characterized in Lactobacillus plantarum In this study, heterofermentative LAB species were screened for their hydroxycinnamic acid metabolism. Data on strain-specific metabolism in combination with comparative genomic analyses identified homologs of HcrB as putative phenolic acid reductases. Par1 and HcrF both encode putative multidomain proteins with 25% and 63% amino acid identity to HcrB, respectively. Of these genes, par1 in L. rossiae and hcrF in L. fermentum were overexpressed in response to hydroxycinnamic acids. The deletion of par1 in L. rossiae led to the loss of phenolic acid metabolism. The strain-specific metabolism of phenolic acids was congruent with the genotype of lactobacilli; however, phenolic acid reductases were not identified in strains of Weissella cibaria that reduced hydroxycinnamic acids to phenylpropionic acids. Phylogenetic analysis of major genes involved in hydroxycinnamic acid metabolism in strains of the genus Lactobacillus revealed that Par1 was found to be the most widely distributed phenolic acid reductase, while HcrB was the least abundant, present in less than 9% of Lactobacillus spp. In conclusion, this study increased the knowledge on the genetic determinants of hydroxycinnamic acid metabolism, explaining the species- and strain-specific metabolic variations in lactobacilli and providing evidence of additional enzymes involved in hydroxycinnamic acid metabolism of lactobacilli.IMPORTANCE The metabolism of secondary plant metabolites, including phenolic compounds, by food-fermenting lactobacilli is a significant contributor to the safety, quality, and nutritional quality of fermented foods. The enzymes mediating hydrolysis, reduction, and decarboxylation of phenolic acid esters and phenolic acids in lactobacilli, however, are not fully characterized. The genomic analyses presented here provide evidence for three novel putative phenolic acid reductases. Matching comparative genomic analyses with phenotypic analysis and quantification of gene expression indicates that two of the three putative phenolic acid reductases, Par1 and HcrF, are involved in reduction of hydroxycinnamic acids to phenylpropionic acids; however, the activity of Par2 may be unrelated to phenolic acids and recognizes other secondary plant metabolites. These findings expand our knowledge on the metabolic potential of lactobacilli and facilitate future studies on activity and substrate specificity of enzymes involved in metabolism of phenolic compounds.


Assuntos
Ácidos Cumáricos/metabolismo , Lactobacillus/genética , Fermentação , Lactobacillus/metabolismo , Especificidade da Espécie , Weissella
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...